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TEST Z KVANTOVÉ A STATISTICKÉ FYZIKY

40 otázek
čas - 125 minut

Dříve než začnete pracovat, přečtěte si pečlivě následující pokyny a informace.

Pokyny: U každé z otázek je navrženo pět odpovědí, z nichž vždy právě jedna je správná. Odpověď, kterou považujete
za správnou, vyznačte předepsaným způsobem na přiloženém barevném formuláři.

Všechny otázky jsou hodnoceny stejně: správná odpověď 1 bod, žádná odpověď 0 bodů, chybná odpověď −0.25 bodu.
Proto nevěnujte příliš mnoho času otázkám, které považujete za příliš obtížné, a také odpovědi nehádejte. Pokud na
některou otázku neznáte ihned odpověď, pokuste se, víte-li něco o problematice, jíž se otázka týká, postupně vyloučit
odpovědi, které rozpoznáte jako chybné. Pro úspěch při testu jsou nutné nejen konkrétní znalosti ze zkoušených částí
fyziky, ale i schopnost analyzovat text a logicky uvažovat. Pracujte rychle, ale pečlivě.

Na některé otázky lze odpovědět přímo, u některých otázek je vhodné provést jednoduchý výpočet, či matematický
zápis slovního tvrzení; potýkat se s jakýmikoli složitějšími výpočty není nutné! Naproti tomu nezapomínejte, že jeden
obrázek vydá za tisíc slov, a proto kdykoli je to možné doprovoďte, své uvažování o problému obrázkem.

Při Vaší práci v následujících 125 minutách Vám přeji nejen úspěch, ale i radost z hledání správných odpovědí na, jak
doufám, zajímavé a inspirativní otázky.
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TEST Z KVANTOVÉ A STATISTICKÉ FYZIKY - VARIANTA CC

Klikněte prosím na tlačítko „Startÿ. Na konci testu klikněte na tlačítko „Vyhodnoceníÿ.

1. E je energie kvantové částice nacházející se v potenciálovém poli na obrázku 1 . Potom neplatí, že

je-li E > V3 , je energiové spektrum spojité a dvojnásobně degenerované,

je-li −V1 < E < 0 , E nabývá jen diskrétních hodnot, přičemž každá z nich je dvojnásobně degenerovaná,

je-li 0 < E < V3 , E je spojité a nedegenerované,

je-li −V1 < E < V3 , energiové spektrum je nedegenerované,

je-li 0 < E , E je spojité.

2. Je-li A hermitovský operátor, potom platí jedno z tvrzení.
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Obr. 1.

Vlastní hodnoty operátoru A jsou vždy nedegenerované,

Střední hodnota operátoru A je reálná,

Spektrum operátoru A nemůže být diskrétní,

Operátor A je unitární,

žádné z tvrzení neplatí.

3. V Einsteinově modelu je kmitající krystalová mřížka reprezentována N nezávislými kvantovými harmonickými oscilá-
tory stejné frekvence ω.
Volná energie kmitajícího krystalu v Einsteinově modelu je rovna

F = NkT ln[1− exp(−~ω/kT )] +N~ω/2 , F = −NkT ln[exp(~ω/kT )− 1] +N~ω/2 ,
F = −NkT ln[1 + exp(−~ω/kT )] +N~ω/2 , F = −NkT ln[1− exp(−~ω/kT )] +N~ω/2,
F = NkT ln[exp(~ω/kT ) + 1] +N~ω/2 .

4. Skutečnost, že chemický potenciál fotonového plynu je nulový, souvisí se všemi následujícími tvrzeními vyjma jednoho.

Hustota stavů D(ω) je kvadratickou funkcí frekvence ω fotonu.,

Počet fotonů je závislý na teplotě,

G = 0 (G je Gibbsův potenciál fotonového plynu),

F = Ω (F je volná energie a Ω je velký kanonický potenciál fotonového plynu),

F = −pV (p je tlak a V je objem fotonového plynu).

5. Vlnová funkce
ϕ(x) = A · x · exp(−mω0x2/2~)

kde A je konstanta, přísluší stacionárnímu stavu harmonického oscilátoru s energií
(ω0 je kruhová frekvence harmonického oscilátoru)

~ω0, 0, ~ω0/2, 2~ω0, 3~ω0/2.

6. Je-li Fermiho teplota plynu elektronů v silně legovaném polovodiči (n ∼= 1019cm−3) řádově rovna 102K, potom teplota
degenerace v kapalném heliu He4 (n ∼= 1022cm−3) je řádově rovna
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102K, 100K,
10−2K, 104K,
Není rovna žádné

z uvedených hodnot .

7. Kvantování z-tové komponenty orbitálního momentu hybnosti plyne z požadavku, aby vlastní funkce ϕ(φ) operátoru
Lz byla

normovaná, reálná, všude spojitá,
periodická s periodou 2π , omezená.

8. Který jev bezprostředně prokazuje existenci hybnosti fotonu?

Fotoelektrický jev, Comptonův jev, Zeemanův jev,
žádný z uvedených jevů, Starkův jev.

9. Pro chemický potenciál µ plynu volných elektronů neplatí jedno z níže uvedených tvrzení.

Gibbsův potenciál G = Nµ , kde N je počet elektronů v systému,

µ nezávisí na teplotě,

Pravděpodobnost obsazení hladiny o energii rovné µ je rovna 0. 5,

µ závisí na koncentraci elektronů,

µ

T
= −

(
∂S

∂N

)
U,V

kde S je entropie, T je absolutní teplota , U je vnitřní energie a V je
objem plynu elektronů

.

10. Skutečnost, že energie základního stavu elektronu uvězněného v potenciálové jámě není nulová, je možné kvalitativně
vysvětlit pomocí

Heisenbergovy relace neurčitosti pro souřadnici a hybnost,

faktu, že základní stav je nedegenerovaný,

principu nerozlišitelnosti mikročástic,

faktu, že elektron má záporný náboj,

hypotézy, že elektron má spin.

11. Tepelný stroj přijímá teplo při teplotě 727 ◦C a vydává teplo při teplotě 527 ◦C . Pokud stroj pracuje s nejvyšší možnou
účinností, potom přijme-li teplo 2 000 J, vykoná práci

2 000 J, 400 J, 1 450 J, 1 600 J, 2 760 J.

12. Pro vlastní funkce ϕnlm(r, φ, θ) = Rnl(r)Ylm(φ, θ) hamiltoniánu bezspinové částice ve sféricky symetrickém

potenciálovém poli V (r) =

{
0 r < R
∞ r > R

platí, že

4πr2 | Rnl(r) |2 určuje hustotu pravděpodobnosti nalezení častice ve vzdálenosti r od centra,

radiální části vlnové funkce Rnl(r) jsou dány sférickými Besselovými funkcemi,

L2ϕnlm = ~2mϕnlm , kde L2 je operátor čtverce momentu hybnosti,
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ϕnlm(r, φ, θ) jsou vlastní funkce operátoru kinetické energie,

` = 0, 1/2, 1, 3/2, 2,. . ..

13. Skutečnost, že nejnižší energiová hladina vodíkového atomu se v magnetickém poli štěpí v dublet, lze vysvětlit,
vezmeme-li v úvahu

kvantování orbitálního momentu hybnosti,

hypotézu, že elektron má vlastní magnetický moment,

vlnové vlastnosti elektronu,

Pauliho vylučovací princip,

Fermiho-Diracovo rozdělení.

14. Pro systém s konstantním počtem částic je objem roven(
∂U

∂T

)
P

,

(
∂G

∂P

)
T

, −
(
∂F

∂T

)
V

,

(
∂F

∂P

)
T

,

(
∂H

∂P

)
U

.

15. Pro systém s konstantním počtem částic je absolutní teplota(
∂U

∂S

)
V

,

(
∂P

∂V

)
S

,

(
∂V

∂P

)
V

,

(
∂S

∂P

)
V

,

(
∂S

∂U

)
V

.

16. Které z tvrzení o vlastních hodnotách λi , i = 1, 2, 3,

matice f(x) =

∥∥∥∥∥∥
0 1 0
0 0 1
1 0 0

∥∥∥∥∥∥ neplatí?

λ1 + λ2 + λ3 = 0, λ1λ2 + λ2λ3 + λ1λ3 = 0,
(λi)3 = +1 pro i = 1, 2, 3, λ1, λ2, λ3 jsou všechna reálná,
λ1λ2 = +1 pro jistou dvojici vlastních hodnot.

17. Uvažujte dvoudimenzionální plyn volných elektronů, kdy

E(k) = ~2k2/2M , k = (2π/L)(nx, ny) , ni ε Z

Hustota stavů (koeficient αj , j = 1, 2, 3, 4, nezávisí na energii)

D(E) = α3E
−1/2, D(E) = α2E

2, D(E) = α4,
D(E) = α1E

1/2, není dána žádným z výrazů.

18. Stav částice je popsán vlnovou funkcí

ψ(x, t) =
1√

(2πh)

∞∫
−∞

c(px) · exp

[
− i
h

(
p2x
2m

t− pxx)

]
dpx

Potom jedno z níže uvedených tvrzení neplatí

Jde o volnou částici pohybující se ve směru osy x,

Koeficienty c(px) lze zvolit tak, aby 〈(∆p)2〉〈(∆x)2〉 = 0,

Koeficienty c(px) lze zvolit tak, aby 〈(∆p)2〉 = 0,
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|c(px)|2 udává hustotu pravděpodobnosti naměření hodnoty px při měření x-ové komponenty hybnosti,

Je-li c(px) 6= δ(px − px0), kde px0 ε R, energie částice nemá ostrou hodnotu.

19. Mikročástice v potenciálovém poli V (x) = αx4, kde α > 0 se nachází ve stavu ψ(x, t), který je superpozicí dvou
sousedních stacionárních stavů ψn(x, t) a ψn+1(x, t) s energiemi En < En+1. Potom jedno z uvedených tvrzení neplatí.

Hustota pravděpodobnosti nalezení částice je sudá funkce v x,

Je-li ψn(x, t) sudá funkce v x, potom ψn+1(x, t) je lichá funkce v x,

∞∫
−∞

ψ∗(x, t)ψ(x, t)dx není funkcí času,

Hustota pravděpodobnosti nalezení částice v bodě x je periodickou funkcí času s periodou 2π~ (En+1 − En),

ψn(0, t) · ψn+1(0, t) = 0.

20. Pro ideální klasický plyn tvořený N jednoatomovými molekulami platí všechna uvedená tvrzení vyjma jednoho

Nejpravděpodobnější hodnota velikostí rychlosti je v1 =
√

(3kT/m),

Rozdělení pravděpodobnosti pro energii molekuly je

P (ε)dε = 2π

(
1

πkT

) 3
2

ε1/2 exp(−ε/kT )dε kde ε =
1
2
mv2,

Střední kvadratická fluktuace energie jedné molekuly je
√
〈(ε− 〈ε〉)2〉 =

√
(3/2) · kT ,

Rozdělení pravděpodobnosti pro velikost rychlosti molekuly je

P (v)dv = 4π
( m

2πkT

) 3
2
v2 exp(−mv2/2kT )dv,

Střední kvadratická rychlost molekuly je
√
〈v2〉 =

√
(3kT/m).

21. Mikročástice v nekonečně hluboké pravoúhlé potenciálové jámě šířky L je v čase t = 0 ve stavu

ψ(x, t = 0) =
√

(30/L5) · x(x− L)

Potom pro t > 0 platí, že (En =
π2~2

2mL2
n2,n εN , jsou možné energie částice v uvedené jámě)

pravděpodobnost naměření energie E1 je rovna nule,

L∫
0

ψ∗(x, t)ψ(x, t)dx závisí na čase,

hustota pravděpodobnosti nalezení částice v bodě x nezávisí na čase,

ψ(x, t) =
∞∑

n=1

cn exp(− i
~
Ent) sin(nπx/L), kde cn =

√
2/L

L∫
0

sin(nπx/L)ψ(x, 0)dx,

pravděpodobnost naměření energie En (n = 1, 2, 3, ...) je periodickou funkcí času.

Copyright c© 2019, ÚFI FSI VUT v Brně



Copyright c© 2019, ÚFI FSI VUT v Brně

22. Uvažujme dvě fyzikální veličiny A a B. Za jakých podmínek lze současně přesně určit hodnotu obou veličin.

Vždy,

Pokud operátor B komutuje s hamiltoniánem systému,

Pokud vlastní hodnoty obou operátorů A a B jsou nedegenerované,

Pokud operátor A komutuje s hamiltoniánem systému,

Pokud operátory A a B komutují.

23. Vztah pro prahovou vlnovou délku brzdného rentgenova záření λmin = c h/eV
(V je napětí mezi katodou a anodou) se odvozuje za předpokladu, že

světlo se chová jako vlna,

moment hybnosti elektronů ve stacionárních stavech je roven celému násobku ~,

světlo je absorbováno a emitováno po kvantech o energii E = hν, kde ν je frekvence světla,

elektronu odpovídá vlna o vlnové délce λ = h/p, kde p je hybnost elektronu,

energie elektronů v kovu je kvantována.

24. Které z následujících tvrzení pro velkou statistickou sumu Ξ neplatí?

Ω = −kT ln Ξ (Ω je velký kanonický potenciál) ,

Ξ = exp(−Ω/kT ),

kT ln Ξ = pV (T je teplota, p je tlak a V je objem plynu) ,

G = −kT ln Ξ (G je volná energie) ,

〈N〉 = kT
∂ ln Ξ
∂µ

(〈N〉 je střední počet částic a µ je chemický potenciál) .

25. Mikročástice v potenciálové jámě V (x) 6= konst. je ve stacionárním stavu popsaném vlnovou funkcí ψ(x, t). Potom
jedno z následujících tvrzení není správné.

Energie částice má ostrou hodnotu,

Pravděpodobnost naměření určité hodnoty px x-ové komponenty hybnosti nezávisí na čase,

Hustota pravděpodobnosti nalezení částice v bodě x nezávisí na čase,

〈Px〉 závisí na čase (〈Px〉 je střední hodnota x-ové komponenty hybnosti),

x-ová komponenta hybnosti částice nemá ostrou hodnotu.
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26. Systém v tepelné rovnováze při teplotě T sestává z velkého počtu N0 ekvivalentních podsystémů, z nichž každý může
být buď ve stavu s energií E1, nebo ve stavu s energií E2, přičemž E2 − E1 = ε > 0.
Pro entropii uvažovaného systému platí jedno z tvrzení.

Entropie je dána vztahem N0k [lnT 5/2 − ln p− konst],

Entropie roste od nuly při T = 0 k hodnotě N0k ln(2) při T →∞,

Entropie s teplotou T neomezeně roste od nuly při T = 0 ,

Entropie klesá s rostoucí teplotou T ,

Pro entropii neplatí žádné z tvrzení.

27. Komutátor

[
d

dx
, x

d
dx

]
je roven

0, ~, 1,
d

dx
, − d

dx
.

28. Systém v tepelné rovnováze při teplotě T sestává z velkého počtu N0 ekvivalentních podsystémů, z nichž každý může
být buď ve stavu s energií E1, nebo ve stavu s energií E2, přičemž E2 − E1 = ε > 0.
Průměrný počet podsystémů, které jsou ve stavu s energií E1, je

N0/[1 + exp(−ε/KT )], N0/2, N0 exp(−ε/KT ),
(N0/2) · exp(−ε/KT ), N0/[1− exp(ε/KT )].

29. Černé těleso zahřáté na teplotu 300 K vyzařuje maximum energie na vlnové délce 1,6 · 10−5m. Černé těleso zahřáté na
teplotu 600 K vyzařuje maximálně na vlnové délce

3, 2 · 10−5m, 4, 0 · 10−3m, 1, 0 · 10−6m,
0, 8 · 10−5m, 4, 0 · 10−6m.

30. Částice o hmotnosti m se nachází v potenciálové jámě

V (x) =
1
2
mω20x

2 + V0δ(x)

kde V0 > 0 a δ(x) je Diracova delta funkce. ϕ0(x), ϕ1(x), ϕ2(x)... budiž vlnové funkce této částice v daném poli pořadě
příslušející vlastním energiím E0 < E1 < E2... Potom platí

En = ~ω0(n+ 1
2 ) pro

n = 1, 3, 5, ... ,
En = n~ω0 pro
n = 1, 3, 5, ... ,

En = ~ω0(n+ 1
2 ) pro

n = 0, 1, 2, 3, ... ,
En = ~ω0(n+ 1

2 ) pro
n = 0, 2, 4, ... ,

žádné z tvrzení .

31. V Einsteinově modelu je kmitající krystalová mřížka reprezentována N nezávislými kvantovými harmonickými oscilá-
tory stejné frekvence ω.
Statistická suma kmitajícího krystalu v Einsteinově modelu je při teplotě T blízké absolutní nule rovna

Z = N(kT/~ω), Z =

(
exp(−~ω/2kT )

1− exp(−~ω/kT )

)N

,

Z = (kT/~ω)N , Z =
N exp(~ω/2kT )
exp(~ω/kT )− 1

,

Z =
N

1− exp(−~ω/kT )
.

32. Planckův vyzařovací zákon se odvozuje za předpokladu, že

světlo se chová jako vlna,

Copyright c© 2019, ÚFI FSI VUT v Brně



Copyright c© 2019, ÚFI FSI VUT v Brně

energie fotonu při teplotě T je rovna 3
2kT ,

hybnost fotonu je rovna h
−→
k , kde

−→
k je vlnový vektor rovinné elektromagnetické vlny,

elektromagnetické záření je emitováno po kvantech o energii E = hν, kde ν je frekvence žáření,

elektromagnetické vlny jsou příčně polarizované.

33. Na kterém obrázku (obr. 2 ) je zobrazena vlnová funkce některého z vázaných stacionárních stavů částice v jed-
norozměrné pravoúhlé symetrické potenciálové jámě konečné hloubky?

Obr. 2.

na obrázku a, na obrázku b, na žádném z obrázků a–d,
na obrázku c, na obrázku d.

34. Teplo Qizobar dodané termodynamickému systému s neměnným počtem částic při izobarické expanzi (při tlaku p) ze
stavu 1 do stavu 2 je rovno

U2 − U1
( U je vnitřní energie) ,

H2 −H1
( H je entalpie) ,

F2 − F1
( F je volná energie) ,

T (S2 − S1)
( S je entropie) ,

G2 −G1
( G je Gibbsův potenciál) .

35. Částice uzavřená v jednorozměrné pravoúhlé nekonečně hluboké potenciálové jámě se stěnami v bodech x = 0 a x = L
se v čase t = 0 nachází ve stavu

ψ(x, t = 0) =
√

(1/L) · [sin(2πx/L) + sin(4πx/L)]

Potom v čase t > 0 platí

Pravděpodobnost naměření energie 8π2~2/mL2 je 0,5,

Energie částice je 10π2~2/mL2,
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Pravděpodobnost naměření energie je periodickou funkcí času,

Energie částice je 2π2~2/mL2,

Energie částice je 8π2~2/mL2.

36. Měrná tepelná kapacita cv plynu volných elektronů v kovu je při pokojové teplotě řádově mnohem menší než 3/2nk ,
kde n je koncentrace elektronů. Co je nejlepším vysvětlením pro tuto skutečnost?

Heisenbergova relace neurčitosti pro hybnost a souřadnici,

Pauliho princip,

Vlnové projevy elektronů,

Kvantování energie elektronů v kovu,

Degenerace energiových hladin.

37. Energie vyzařovaná černým tělesem je po dobu jedné minuty užita pro ohřev vody. Přitom teplota vody vzroste z
20, 0 ◦C na 20, 5 ◦C. Pokud se absolutní teplota černého tělesa zvýší dvakrát a experiment se opakuje, potom za jednu
minutu teplota vody vzroste z 20, 0 ◦C na teplotu

28 ◦C, 36 ◦C, 24 ◦C, 21 ◦C, 100 ◦C.

38. a+ (a) je kreační (anihilační) operátor a |n〉, |m〉 jsou stavové vektory harmonického oscilátoru v representaci obsazo-
vacích čísel. Potom jedno z následujících tvrzení neplatí.

〈n | aa+ | m〉 = (n+ 1) · δnm
,

〈n | a2 | m〉 =
√

(n+ 1)(n+ 2) · δn,m−2
,

〈n | a | m〉 =
√

(n+ 1) · δn,m−1
,

〈n | (a+)2 | m〉 =
√
n(n+ 1) · δn,m+2

,

〈n | a+ | m〉 =
√

(n) · δn,m+1
.

39. Částice je ve stavu popsaném vlnovou funkcí ψ . Jestliže ϕn je vlastní funkce operátoru A příslušející nedegenerované
vlastní hodnotě an, potom integrováním výrazu ϕ∗nψ přes celý objem můžeme dostat

nic, co je uvedené v bodech,

neurčitost veličiny A,

časovou derivaci veličiny A,

pravděpodobnost, že při měření veličiny A naměříme hodnotu an,
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hustotu pravděpodobnosti nalezení částice v bodě x.

40. Pro tepelnou kapacitu Cv plynu tvořeného N dvouatomovými molekulami platí, že

Cv = 5
2Nk pro teploty T � hω0/k,

Cv = 7
2Nk pro všechny teploty,

Cv = 7
2Nk pro teploty T � hω0/k , kde ω0 je frekvence kmitů molekuly,

Cv = 3
2Nk pro všechny teploty,

Cv = 5
2Nk pro všechny teploty.
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